Abstract

Recently, single carrier block transmission (SCBT) has received much attention in high-rate phase-coherent underwater acoustic communication. However, minimum-mean-square-error (MMSE) linear FDE may suffer performance loss in the severely time dispersive underwater acoustic channel. To combat the channel distortion, a novel multi-channel receiver with maximum ratio combining and a low complex T/4 fractional iterative frequency domain equalization (FDE) is investigated to improve diversity gain and the bit error rate (BER) performance. The proposed method has been verified by the real data from a lake underwater acoustic communication test in November 2011. At 1.8 km, the useful data rates are around 1500 and 3000 bits/ s for BPSK and QPSK respectively. The results show the improvements of system performance. Compared with MMSE FDE system, the output SNR improvement is 6.9 dB, and the BER is from 10-3 to no error bits for BPSK. The output SNR improvement is 5.3 dB, and the BER is from 1.91×10-2 to 2.2×10-4 for QPSK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.