Abstract

Graph convolutional networks (GCNs) have attracted increasing attention in various fields due to their significant capacity to process graph-structured data. Typically, the GCN model and its variants heavily rely on the transmission of node features across the graph structure, which implicitly assumes that the graph structure and node features are consistent, i.e., they carry related information. However, in many real-world networks, node features may unexpectedly mismatch with the structural information. Existing GCNs fail to generalize to inconsistent scenarios and are even outperformed by models that ignore the graph structure or node features. To address this problem, we investigate how to extract representations from both the graph structure and node features. Consequently, we propose the multi-channel graph convolutional network (MCGCN) for graphs with inconsistent structures and features. Specifically, the MCGCN encodes the graph structure and node features using two specific convolution channels to extract two separate specific representations. Additionally, two joint convolution channels are constructed to extract the common information shared by the graph structure and node features. Finally, an attention mechanism is utilized to adaptively learn the importance weights of these channels under the guidance of the node classification task. In this way, our model can handle both consistent and inconsistent scenarios. Extensive experiments on both synthetic and real-world datasets for node classification and recommendation tasks show that our methods, MCGCN-A and MCGCN-I, achieve the best performance on seven out of eight datasets and the second-best performance on the remaining dataset. For simpler graph structures or tasks where the overhead of multiple convolution channels is not justified, traditional single-channel GCN models might be more efficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call