Abstract

Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication. However, this kind of structured light beams is usually generated using several polarization and spatial phase devices, which decreases the configurability of optical systems. Here, we have designed a kind of polarized optical multi-vortices generator based on the Stokes–Mueller formalism and cross-phase modulation. In our scheme, multi-channel generation of polarized vortex beams can be realized through a single optical element and a single-input Gaussian beam. The polarization states and orbital angular momentum of the generated light beams are all-optically controllable. Furthermore, the proposed polarized optical multi-vortices generator has also been demonstrated experimentally through one-step holographic recording in an azobenzene liquid-crystalline film and the experimental results agree with theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.