Abstract

A five-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-7 superconducting tokamak. The principle and structure of the five-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous wave glow discharge HCN laser with a 3.4 m cavity length and a 100 mW power output at 337 μm wavelength. The temporal resolution was 0.1 ms and the detection sensitivity was 1/12 fringe. Preliminary experimental results measured by the interferometer on HT-7 tokamak are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.