Abstract

We present a multi-channel delay sampling method to extend imaging depth in high-speed swept-source optical coherence tomography (SS-OCT). A balanced detector captures interference signals, converting them into electrical signals, which are then split into N channels, each with fixed time delays determined by the length of electrical cables. Then, they are digitized by an N-channel acquisition card. A calibration procedure is utilized to compensate for non-uniform phase shifts resulting from fixed time delays. The N-channel signals are merged in k-space and resampled to obtain a linearized spectrum, which increases the sampling rate by a factor of N, thereby extending the ranging distance by N times, all without altering k-clock triggering or sacrificing other imaging performance. The signal-to-noise ratio and sensitivity within the original depth range also have been enhanced. This advancement contributes to the improvement of the overall performance of SS-OCT systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.