Abstract

Image restoration (IR) is a long-standing challenging problem in low-level image processing. It is of utmost importance to learn good image priors for pursuing visually pleasing results. In this paper, we develop a multi-channel and multi-model-based denoising autoencoder network as image prior for solving IR problem. Specifically, the network that trained on RGB-channel images is used to construct a prior at first, and then the learned prior is incorporated into single-channel grayscale IR tasks. To achieve the goal, we employ the auxiliary variable technique to integrate the higher-dimensional network-driven prior information into the iterative restoration procedure. In addition, according to the weighted aggregation idea, a multi-model strategy is put forward to enhance the network stability that favors to avoid getting trapped in local optima. Extensive experiments on image deblurring and deblocking tasks show that the proposed algorithm is efficient, robust, and yields state-of-the-art restoration quality on grayscale images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.