Abstract

Estimation of pore pressure and in-situ vertical stress magnitude is essential for understanding the geomechanical behavior of the gas hydrate sediments in deep offshore of the Mahanadi basin. The basin located at northern side of eastern continental margin of India (ECMI) contains gas hydrate in clay/silt sediments. The pore pressure and vertical stress are mapped on two 2D-multi channel seismic data of lines (MH-38A and MH-38B) with aid of information of three wells (namely NGHP-01-19, NGHP-01-09 and NGHP-01-08). Initially, the coefficients of best fit curve have been computed from velocity-effective stress plot for the individual wells and applied on the seismic velocity to transform into the effective stress. The vertical stress has been computed from both the seismic and log data. Therefore, the pore pressure is predicted by subtracting the effective stress from the vertical stress. The pore pressure have been mapped in gas hydrate stability zone (GHSZ) and sediments below bottom simulating reflector (BSR). The pore pressure and vertical stress gradient are 10.11 MPa/km and 10.67 MPa/km, respectively. The pore pressure and vertical stress from seismic data are closely matched at well location with excellent goodness of fit (R2) varying from 0.82 to 0.95. Normal pressure is observed in the gas hydrate bearing sediments but slightly high pressures are noticed below the BSR indicating presence of free gas. The pore pressure from seismic data will guide drillers for choosing the mud weight during well drilling and casing optimizing in other part of deep offshore in the Mahanadi basin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.