Abstract

AimsAccurate dose delivery is crucial for cervical cancer volumetric modulated arc therapy (VMAT). We aimed to develop a robust deep-learning (DL) algorithm for fast and accurate dose prediction of cervical cancer VMAT in multicenter datasets and then explore the feasibility of the DL algorithm to endometrial cancer VMAT with different prescriptions. Materials and methodsWe proposed the AtTranNet algorithm for three-dimensional dose prediction. A total of 367 cervical patients were enrolled in this study. Three hundred twenty-two cervical patients from 3 centers were randomly divided into 70%, 10%, and 20% as training, validation, and testing sets, respectively. Forty-five cervical patients from another center were selected for external testing. Moreover, 70 patients of endometrial cancer with different prescriptions were further selected to test the model. Prediction precision was evaluated by dosimetric difference, dose map, and dose-volume histogram metrics. ResultsThe prediction results were all clinically acceptable. The mean absolute error within the body in internal testing was 0.66 ± 0.63%. The maximum |δD| for planning target volume was observed in D98, which is 1.24 ± 2.73 Gy. The maximum |δD| for organs at risk was observed in Dmean of bladder, which is 4.79 ± 3.14 Gy. The maximum |δV| were observed in V40 of pelvic bones, which is 4.77 ± 4.48%. ConclusionAtTranNet showed the feasibility and reasonable accuracy in the dose prediction for cervical cancer in multiple centers. The model can also be generalized for endometrial cancer with different prescriptions without any transfer learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call