Abstract
The Countrywide Mortality Surveillance for Action platform is collecting verbal autopsy (VA) records from a nationally representative sample in Mozambique. These records are used to estimate the national and subnational cause-specific mortality fractions (CSMFs) for children (1-59 months) and neonates (1-28 days). Cross-tabulation of VA-based cause-of-death (COD) determination against that from the minimally invasive tissue sampling (MITS) from the Child Health and Mortality Prevention project revealed important misclassification errors for all the VA algorithms, which if not accounted for will lead to bias in the estimates of CSMF from VA. A recently proposed Bayesian VA-calibration method is used that accounts for this misclassification bias and produces calibrated estimates of CSMF. Both the VA-COD and the MITS-COD can be multi-cause (i.e., suggest more than one probable COD for some of the records). To fully use this probabilistic COD data, we use the multi-cause VA calibration. Two different computer-coded VA algorithms are considered-InSilicoVA and EAVA-and the final CSMF estimates are obtained using an ensemble calibration that uses data from both the algorithms. The calibrated estimates consistently offer a better fit to the data and reveal important changes in the CSMF for both children and neonates in Mozambique after accounting for VA misclassification bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The American Journal of Tropical Medicine and Hygiene
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.