Abstract

High-pressure photoionization time-of-flight mass spectrometry (HPPI-TOFMS) is a versatile and highly sensitive analytical technique for online and real-time analysis of trace volatile organic compounds in complex mixtures. However, discrimination of isomers is usually a great challenge for the soft ionization method, and matrix effect is also inevitable under high pressure in the HPPI source. In this work, we describe a first attempt to develop a two-dimensional (2D) hyphenated instrument by coupling of a multi-capillary column (MCC) with a HPPI-TOFMS to overcome these problems. The capability of the MCC-HPPI-TOFMS for discrimination of isomeric compounds and elimination of the matrix effect was demonstrated by analyzing flavor mixtures. With the merits of fast separation, soft ionization and high detection sensitivity, satisfactory effects in the 2D analysis were achieved, despite the relatively low chromatographic resolution of MCC. As a result, three isomers, eucalyptol, l-menthone and linalool, in a flavor mixture were successfully categorized within 90 s, and the matrix effect caused by solvent ethanol was significantly eliminated as well. The limits of detection (LODs) down to sub-ppbv level were achieved for the investigated five flavor compounds without any enrichment process, and an excellent repeatability was obtained with the relative standard deviations (RSDs) of signal intensities ≤5%. The MCC-HPPI-TOFMS system was preliminarily applied for rapid and online analysis of flavor compounds in the exhaled gas of a volunteer after mouth rinsing with a gargle product. The rapid changes of the three flavor compounds, as well as the steady endogenous metabolite acetone, in the exhaled gas were successfully determined with a time-resolution of only 1.5 min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.