Abstract

Dynamic biological systems can be modelled to an equivalent modular structure using Boolean networks (BNs) due to their simple construction and relative ease of integration. The chemotaxis network of the bacterium Escherichia coli (E. coli) is one of the most investigated biological systems. In this study, the authors developed a multi-bit Boolean approach to model the drifting behaviour of the E. coli chemotaxis system. Their approach, which is slightly different than the conventional BNs, is designed to provide finer resolution to mimic high-level functional behaviour. Using this approach, they simulated the transient and steady-state responses of the chemoreceptor sensory module. Furthermore, they estimated the drift velocity under conditions of the exponential nutrient gradient. Their predictions on chemotactic drifting are in good agreement with the experimental measurements under similar input conditions. Taken together, by simulating chemotactic drifting, they propose that multi-bit Boolean methodology can be used for modelling complex biological networks. Application of the method towards designing bio-inspired systems such as nano-bots is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call