Abstract

In general, the study of a high-rise building's behaviour when subjected to a horizontal load (wind or earthquake) is carried out through numerical modelling with finite elements method. This paper proposes a new, original approach based on the use of a multi-beams model. By redistributing bending and axial stiffness of horizontal elements (beams and slabs) along vertical elements, it becomes possible to produce a system of differential equations able to represent the structural behaviour of the whole building. In this paper this approach is applied to the study of bending behaviour in a 37-storey building (Torre Pontina, Latina, Italy) with a regular reinforced concrete structure. The load considered is the wind, estimated in accordance with Italian national technical rules and regulations. To simplify the explanation of the approach, the wind load was considered uniform on the height of building with a value equal to the average value of the wind load distribution. The system of differential equations' is assessed numerically, using Matlab, and compared with the obtainable solution from a finite elements model along with the obtainable solutions via classical Euler-Bernoulli beam theory. The comparison carried out demonstrates, in the case study examined, an excellent approximation of structural behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call