Abstract
The method of buried landmine detection based on using elastic waves in the ground and a laser Doppler vibrometer (LDV) as a vibration sensor has shown excellent performance in field tests. To increase the speed of measurements, a multi-beam laser Doppler vibrometer (MB-LDV) was developed. The system is based on a heterodyne interferometer and is capable of simultaneously measuring the vibration of the ground at 16 points over a span of 1 m with a velocity resolution of less than 1 µm/s. Both digital in-phase and quadrature (I&Q) and analog phase-locked loop (PLL) demodulation have been used for signal processing. The MB-LDV can create a velocity image of the ground surface either in "stop-and-stare" mode or in a continuously scanning mode. The continuously scanning operation results in an increased velocity noise floor due to speckle noise. The speckle noise floor increases with the increase of the speed of the laser beam and can degrade the velocity image of a mine. To overcome the effects of speckle noise, the excitation source must provide a ground vibration velocity higher than the velocity noise floor of the vibrometer. The MB-LDV has been tested at landmine test lanes and shows the ability to detect buried landmine within a one-square-meter area in a time of less than 20 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.