Abstract

Over the past fifty years the scanning electron microscope (SEM) has established itself as the most versatile and productive tool for imaging and microanalysis in many areas of science and technology, and some seventy-thousand instruments generate millions of micrographs every day. Scanning electron microscopes do, however, have one fundamental limitation in that the only experimental variable available to the operator is the choice of the accelerating voltage. Although the ability to vary beam energy is both necessary and important, it is an unfortunate fact that changing the beam energy also alters many aspects of performance: imaging resolution, relative strength of different signal components, depth of beam penetration, capabilities of the various analytical systems, and the severity of charging and beam-induced damage. This makes it difficult or impossible to optimize the interaction of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.