Abstract

Ultraviolet (UV)-laser induced quantum well intermixing (QWI) technique can generate large multiple bandgap blue shifts in III-V quantum well semiconductor heterostructure. The application of the UV-laser QWI technique to fabricate multi-bandgap photonic devices based on compressively strained InGaAsP/InP quantum well laser microstructure is reported. We show that under certain UV-laser irradiation conditions, the photoluminescence (PL) intensity can be enhanced, and the full width at half maximum (FWHM) linewidth can be reduced. The blue shift of bandgap can reach as large as 145 nm, while the PL intensity is about 51% higher than that of the as-grown material. Experimental results of post growth wafer level processing for the fabrication of bandgap-shifted waveguides and laser diodes are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.