Abstract
This paper proposes a completely automated, integrated tool path planning for the finish machining of freeform surfaces as a part of the hybrid metal additive manufacturing and CNC machining. This planning capability spans from a generation of b-spline freeform surfaces, to surface finish optimisation, to collision detection, to tool path generation. Two scallop height methods have been used to compare the optimal tool path strategy. Both collision detection of a tool with neighbouring surfaces and collision correction for a tool are solved using a novel extension of the bounding box, which uses body diagonal points for computation. This paper proposes a multiple screening technique to improve the computational efficiency of tool path generation calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.