Abstract

The Black–Litterman model aims to enhance asset allocation decisions by overcoming the problems of mean-variance portfolio optimization. We propose a sample-based version of the Black–Litterman model and implement it on a multi-asset portfolio consisting of global stocks, bonds, and commodity indices, covering the period from January 1993 to December 2011. We test its out-of-sample performance relative to other asset allocation models and find that Black–Litterman optimized portfolios significantly outperform naïve-diversified portfolios (1/N rule and strategic weights), and consistently perform better than mean-variance, Bayes–Stein, and minimum-variance strategies in terms of out-of-sample Sharpe ratios, even after controlling for different levels of risk aversion, investment constraints, and transaction costs. The BL model generates portfolios with lower risk, less extreme asset allocations, and higher diversification across asset classes. Sensitivity analyses indicate that these advantages are due to more stable mixed return estimates that incorporate the reliability of return predictions, smaller estimation errors, and lower turnover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.