Abstract

The development of active distribution grids requires more accurate and lower computational cost state estimation. In this paper, the authors investigate a decentralized learning-based distribution system state estimation (DSSE) approach for large distribution grids. The proposed approach decomposes the feeder-level DSSE into subarea-level estimation problems that can be solved independently. The proposed method is decentralized pruned physics-aware neural network (D-P2N2). The physical grid topology is used to parsimoniously design the connections between different hidden layers of the D-P2N2. Monte Carlo simulations based on one-year of load consumption data collected from smart meters for a three-phase distribution system power flow are developed to generate the measurement and voltage state data. The IEEE 123-node system is selected as the test network to benchmark the proposed algorithm against the classic weighted least squares and state-of-the-art learning-based DSSE approaches. Numerical results show that the D-P2N2 outperforms the state-of-the-art methods in terms of estimation accuracy and computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.