Abstract
Low-latency data processing is essential for wide-area monitoring of smart grids. Distributed and local data processing is a promising approach for enabling low-latency requirements and avoiding the large overhead of transferring large volumes of time-sensitive data to central processing units. State estimation in power systems is one of the key functions in wide-area monitoring, which can greatly benefit from distributed data processing and improve real-time system monitoring. In this paper, data-driven Kalman filters have been used for multi-area distributed state estimation. The presented state estimation approaches are data-driven and model-independent. The design phase is offline and involves modeling multivariate time-series measurements from PMUs using linear and non-linear system identification techniques. The measurements of the phase angle, voltage, reactive and real power are used for next-step prediction of the state of the buses. The performance of the presented data-driven, distributed state estimation techniques are evaluated for various numbers of regions and modes of information sharing on the IEEE 118 test case system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.