Abstract

PurposeThe purpose of this paper is to propose a model for a target searching problem in a two-dimensional region with time constraints. The proposed model facilitates the search operation by minimizing the mission time and fuel usage, and the search operation is performed by a set of agents divided into a number of groups.Design/methodology/approachThe authors have applied optimization techniques, Cartesian product, inclusion–exclusion principle, cooperative strategy, Shapley value, fuzzy Shapley function and Choquet integral to model the problem.FindingsThe proposed technique optimizes the placement of base stations that minimizes the sortie length of the agents. The results show that the cooperative strategy outperforms the non-cooperative strategy. The Shapley values quantify the rewards of each group based on their contributions to the search operation, whereas the fuzzy Shapley values determine the rewards of each group based on their contributions and level of cooperation in the search operation.Practical implicationsThe proposed model can be applied to model many real-time problems such as patrolling in international borders, urban areas, forests and managing rescue operations after natural calamities, etc. Therefore, defence organizations, police departments and other operation management sectors will be benefitted by applying the proposed approach.Originality/valueTo the best of the authors’ knowledge, determining the optimal locations of base stations in a region is not explored in the existing works on target searching problems with fuel constraints. The proposed approach to cooperatively search the targets in a region is new. Introducing the Shapley function and fuzzy Shapley function is a novel idea to quantify the rewards of each group based on their contributions and level of cooperation in the search operation. This paper addresses these unexplored areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.