Abstract

In this article, a new type of multi-agent system model with mixed coupling topologies is proposed for realizing pattern formations with specific geometric shapes and formation splitting. The interactions among individual agents are assumed to be universally repulsive and selectively attractive. By designing the form of attractive coupling matrix, one can obtain a variety of formations with specific shapes in the system through self-assembly of agents. Both symmetric coupling case and asymmetric coupling case are considered. Analysis and simulation results show symmetric ones result in convergent dynamics to steady-state formations, whereas, for asymmetric case, the system exhibits complex dynamic behaviours, including collective rotation and chaotic motion. By breaking the graph defined by attractive couplings into disjoint subgraphs, one can make the formation of agents to split into small sizes. The results are relevant for the design of coordination and cooperative control for multi-agent systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call