Abstract

In multi-agent reinforcement learning, transfer learning is one of the key techniques used to speed up learning performance through the exchange of knowledge among agents. However, there are three challenges associated with applying this technique to real-world problems. First, most real-world domains are partially rather than fully observable. Second, it is difficult to pre-collect knowledge in unknown domains. Third, negative transfer impedes the learning progress. We observe that differentially private mechanisms can overcome these challenges due to their randomization property. Therefore, we propose a novel differential transfer learning method for multi-agent reinforcement learning problems, characterized by the following three key features. First, our method allows agents to implement real-time knowledge transfers between each other in partially observable domains. Second, our method eliminates the constraints on the relevance of transferred knowledge, which expands the knowledge set to a large extent. Third, our method improves robustness to negative transfers by applying differentially exponential noise and relevance weights to transferred knowledge. The proposed method is the first to use the randomization property of differential privacy to stimulate the learning performance in multi-agent reinforcement learning system. We further implement extensive experiments to demonstrate the effectiveness of our proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call