Abstract

As industry rapidly shifts towards mass personalisation, the need for a decentralised multi-agent system capable of dynamic flexible job shop scheduling (FJSP) is evident. Traditional heuristic and meta-heuristic scheduling methods cannot achieve satisfactory results and have limited application to static environments. Recent Reinforcement Learning (RL) approaches that consider dynamic FJSP, lack flexibility and autonomy as they use a single-agent centralised model, assuming global observability. As such, we propose a Multi-Agent Reinforcement Learning (MARL) system for scheduling dynamically arriving assembly jobs in a robot assembly cell. We applied a Double DQN-based algorithm and proposed a generalised observation, action and reward design for the dynamic FJSP setting. Using a centralised training phase, each agent (i.e., robot) in the assembly cell executes decentralised scheduling decisions based on local observations. Our solution demonstrated improved performance against rule-based heuristic methods, for optimising makespan. We also reported the impact of different observation sizes of each agent on optimisation performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.