Abstract

In device-to-device (D2D) networks, multiple resource-limited mobile devices cooperate with one another to execute computation tasks. As the battery capacity of mobile devices is limited, the computation tasks running on the mobile devices will terminate once the battery is dead. In order to achieve sustainable computation, energy-harvesting technology has been introduced into D2D networks. At present, how to make multiple energy harvesting mobile devices work collaboratively to minimize the long-term system cost for task execution under limited computing, network and battery capacity constraint is a challenging issue. To deal with such a challenge, in this paper, we design a multi-agent deep deterministic policy gradient (MADDPG) based cost-aware collaborative task-execution (CACTE) scheme in energy harvesting D2D (EH-D2D) networks. To validate the CACTE scheme's performance, we conducted extensive experiments to compare the CACTE scheme with four baseline algorithms, including Local, Random, ECLB (Energy Capacity Load Balance) and CCLB (Computing Capacity Load Balance). Experiments were accompanied by various system parameters, such as the mobile device's battery capacity, task workload, the bandwidth and so on. The experimental results show that the CACTE scheme can make multiple mobile devices cooperate effectively with one another to execute many more tasks and achieve a higher long-term reward, including lower task latency and fewer dropped tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.