Abstract
This work investigates a random access (RA) game for a time-slotted RA system, where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$N$</tex-math></inline-formula> players choose a set of slots of a frame and each frame consists of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$M$</tex-math></inline-formula> multiple time slots. We obtain the pure strategy Nash equilibria (PNEs) of this RA game, where slots are fully utilized as in the centralized scheduling. As an algorithm to realize a PNE (Pure strategy Nash Equilibrium), we propose an Exponential-weight algorithm for Exploration and Exploitation (EXP3)-based multi-agent (MA) learning algorithm, which has the computational complexity of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$O(N N_{\max }^{2} T)$</tex-math></inline-formula> . EXP3 is a bandit algorithm designed to find an optimal strategy in a multi-armed bandit (MAB) problem that users do not know the expected payoff of each strategy. Our simulation results show that the proposed algorithm can achieve PNEs. Moreover, it can adapt to time-varying environments, where the number of players varies over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.