Abstract

This paper leverages multi-agent reinforcement learning (MARL) to develop an efficient control system for a wind farm comprising a new type of wind turbines with hydrostatic transmission. The primary motivation for hydrostatic wind turbines (HWT) is increased reliability, and reduced manufacturing, operating, and maintaining costs by removing troublesome components and reducing nacelle weight. Nevertheless, the high system complexity of HWT and the wake effect pose significant challenges for the control of HWT-based wind farms. We therefore propose a MARL algorithm named multi-agent policy optimization (MAPO), which allows agents (turbines) to gradually improve their control policies by repeatedly interacting with the environment to learn an optimal operation curve for wind farms. Simulation results based on a wind farm simulator, FAST.Farm, show that MAPO outperforms the greedy policy and a popular learning-based method, multi-agent deep deterministic policy gradient (MADDPG), in terms of power generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.