Abstract
In the context of Industry 4.0, companies understand the advantages of performing Predictive Maintenance (PdM). However, when moving towards PdM, several considerations must be carefully examined. First, they need to have a sufficient number of production machines and relative fault data to generate maintenance predictions. Second, they need to adopt the right maintenance approach, which, ideally, should self-adapt to the machinery, priorities of the organization, technician skills, but also to be able to deal with uncertainty. Reinforcement learning (RL) is envisioned as a key technique in this regard due to its inherent ability to learn by interacting through trials and errors, but very few RL-based maintenance frameworks have been proposed so far in the literature, or are limited in several respects. This paper proposes a new multi-agent approach that learns a maintenance policy performed by technicians, under the uncertainty of multiple machine failures. This approach comprises RL agents that partially observe the state of each machine to coordinate the decision-making in maintenance scheduling, resulting in the dynamic assignment of maintenance tasks to technicians (with different skills) over a set of machines. Experimental evaluation shows that our RL-based maintenance policy outperforms traditional maintenance policies (incl., corrective and preventive ones) in terms of failure prevention and downtime, improving by ≈75% the overall performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.