Abstract
Authorities in modern cities are facing daily challenges related to traffic control. Due to the problem complexity caused by the urbanization growth, investing in developing traffic signal control systems (TSCS) to guarantee better mobility has taken more attention by these authorities. In the existing literature, the majority of TSCS offers only a real-time control for a detected traffic problem without considering early prediction and estimation of its occurrence. Furthermore, traffic problems related to the arrival and guidance of emergency vehicles are rarely considered. Based on these gaps, we rely on concepts and mechanisms from both, the Artificial and the convolution neural networks (ANN and CNN), coupled with the longest queue first maximal weight matching algorithm (LQF-MWM), to develop PANNAL, a predictive and reactive TSCS. PANNAL is a Multi-Agent based System, where each individual agent has ANN, CNN, and LQF-MWM to adapt signal sequences and durations and favor the crossing of emergency vehicles. Agents have a heterarchical architecture considered for coordination. We leant on V1SSIM, a state-of-the-art traffic simulation software for simulation and evaluation. We adopted algorithms, scenarios, key performance indicators, and evaluation results from the recent literature for benchmarking. These algorithms are pre-emptive and have a high performance and competitive results in traffic control of disturbed traffic condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Ambient Intelligence and Humanized Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.