Abstract

Bayesian optimization (BO) is a powerful black-box optimization framework that looks to efficiently learn the global optimum of an unknown system by systematically trading-off between exploration and exploitation. However, the use of BO as a tool for coordinated decision-making in multi-agent systems with unknown structure has not been widely studied. This paper investigates a black-box optimization problem over a multi-agent network coupled via shared variables or constraints, where each subproblem is formulated as a BO that uses only its local data. The proposed multi-agent BO (MABO) framework adds a penalty term to traditional BO acquisition functions to account for coupling between the subsystems without data sharing. We derive a suitable form for this penalty term using alternating directions method of multipliers (ADMM), which enables the local decision-making problems to be solved in parallel (and potentially asynchronously). The effectiveness of the proposed MABO method is demonstrated on an intelligent transport system for fuel efficient vehicle platooning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call