Abstract

Multi-agent-based proactive–reactive scheduling for job shops is presented, aiming to hedge against the uncertainties of dynamic manufacturing environments. This scheduling mechanism consists of two stages, including proactive scheduling stage and reactive scheduling stage. In the proactive scheduling stage, the objective is to generate a robust predictive schedule against known uncertainties; in the reactive scheduling stage, the objective is to dynamically rectify the predictive schedule to adapt to unknown uncertainties, viz. the reactive scheduling stage is actually complementary to the proactive scheduling stage. A stochastic model is presented, which concerns uncertain processing times in proactive scheduling stage on the basis of analyzing the deficiencies of a classical scheduling model for a production schedule in practice. For the stochastic scheduling problem, a multi-agent-based architecture is proposed and a distributed scheduling algorithm is used to solve this stochastic problem. Finally, the repair strategies are introduced to maintain the original proactive schedule when unexpected events occur. Case study examples show that this scheduling mechanism generates more robust schedules than the classical scheduling mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.