Abstract
Traffic guidance and traffic control are effective means to alleviate traffic problems. Formulating effective traffic guidance measures can improve the utilization rate of road resources and optimize the performance of the entire traffic network. Assuming that the traffic coordinator can capture traffic flow information in real-time utilizing sensors installed on each road, we consider the strong resilience constraints to construct an optimal selection problem of balanced flow in the traffic network. Based on multi-agent modeling, each agent has access to the corresponding traffic information of each link. We design a distributed optimization algorithm to tackle this optimization problem. In addition to the inherent advantages of distributed multi-agent algorithms, the communication topology among the sensors is allowed to be time-varying, which is more consistent with reality. To prove the effectiveness of the proposed algorithm, we also give a numerical simulation in the multi-agent environment. It should be reiterated that the optimization problem studied in this paper mainly focuses on traffic managers’ perspectives. The goal of the studied optimization problem is to minimize the overall cost of the traffic network by adjusting the optimal equilibrium traffic flow. This study provides a reference for solving congestion optimization in today’s cities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.