Abstract

Task allocation and path planning considering changes in the mobility of robots in the environment allows the robots to efficiently execute tasks with smaller travel times. A lunar base construction is one of the situations in which robots can more efficiently accomplish its goal by taking such environment changes into account when performing tasks. For the construction, we assumed that when a robot executes a task of building a road, the environment changes such that aisles that were unusable before the task become usable post execution. If such changes in environment are considered in advance, the robot can efficiently plan to wait until the environment changes and can move before executing the task. However, previous studies have not considered such changes, resulting in inefficient planning. To solve this problem, we developed a multi-agent action graph that consists of multiple layers and expresses the environment changes associated with task execution in terms of changes in these layers. In this graph, task allocation and path planning are formulated as a combinatorial optimization problem and are optimized using mixed-integer programming. Multi-agent action graphs and the proposed formulation enable efficient planning considering changes in the robots’ mobility in advance. Through simulations, we confirmed that the proposed method completed the construction of the lunar base approximately 16.4% earlier than the conventional method, while consuming approximately 16.0% less total energy of the robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.