Abstract

Abstract Refractory castables used in fluid catalytic converter (FCC) risers should present suitable particle erosion and thermal shock resistances at temperatures below 900 °C. Considering that calcium aluminate cement (CAC)-bonded refractories usually start their densification above 1200 °C, the use of sintering additives to induce faster densification is a promising technological alternative. Therefore, this work addresses the evaluation of mullite-based castables containing a boron-based sintering additive and CAC and/or hydratable alumina as the binder sources. Hot elastic modulus, cyclical thermal shock, hot modulus of rupture and cold erosion resistance measurements were carried out to evaluate the compositions. According to the attained results, adding 1.5 wt% of the evaluated sintering additive to the designed castables led to a remarkable increase of the hot modulus of rupture (maximum of 40.4 MPa at 800 °C for the CAC-containing refractory) and high erosion resistance (1.5–2.9 cm3) after pre-firing at 800 °C for 5 h. Moreover, the combination of CAC and hydratable alumina gave rise to an improved refractory (M–2CAC–2HA–S) showing a transient liquid formation at an increased temperature, high thermal shock resistance (no E decay after 8 thermal cycles, ΔT=800 °C) and high mechanical strength at 800 °C and 1000 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call