Abstract

Heat shock proteins (HSPs) are crucial cellular stress proteins that react to environmental cues, ensuring the preservation of cellular functions. They also play pivotal roles in orchestrating the immune response and participating in processes associated with cancer. Consequently, the classification of HSPs holds immense significance in enhancing our understanding of their biological functions and in various diseases. However, the use of computational methods for identifying and classifying HSPs still faces challenges related to accuracy and interpretability. In this study, we introduced MulCNN-HSP, a novel deep learning model based on multi-scale convolutional neural networks, for identifying and classifying of HSPs. Comparative results showed that MulCNN-HSP outperforms or matches existing models in the identification and classification of HSPs. Furthermore, MulCNN-HSP can extract and analyze essential features for the prediction task, enhancing its interpretability. To facilitate its accessibility, we have made MulCNN-HSP available at http://cbcb.cdutcm.edu.cn/HSP/. We hope that MulCNN-HSP will contribute to advancing the study of HSPs and their roles in various biological processes and diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call