Abstract
Two commonly used management practices for weed control in container plant production are hand pulling and herbicide applications. There are problems associated with these methods including crop phytotoxicity and environmental concerns associated with off-target movement of herbicides. Other nonchemical weed control methods could reduce herbicide-based environmental concerns, mitigate herbicide-resistance development, and improve the overall level of weed control in container nursery production. Readily available tree-mulch species, eastern red cedar (Juniperus virginiana), ground whole loblolly pine (Pinus taeda), chinese privet (Ligustrum sinense), and sweetgum (Liquidambar styraciflua) were harvested, chipped, and evaluated at multiple depths with and without the herbicide dimethenamid-p. Pine bark mini-nuggets were also evaluated. Mulches were applied at depths of 1, 2, and 4 inches and evaluated over three 30-day periods for their effectiveness in suppressing spotted spurge (Chamaesyce maculata), long-stalked phyllanthus (Phyllanthus tenellus), and eclipta (Eclipta prostrata). After 30 days, herbicide/mulch combinations, as well as mulch treatments alone, had reduced weed fresh weight 82% to 100% with 1 inch of mulch. By 168 days after treatment, dimethenamid-p had lost all efficacy, and mulch depth was the only factor that still had significant effects, reducing spotted spurge fresh weight by 90%, 99.5%, and 100% with depths of 1, 2, and 4 inches, respectively. The economics of mulch weed control will depend on variables such as available time, nursery layout, location, and availability of resources, equipment, among others. Regardless of variable economic parameters, data from this study reveals that any of these potential mulch species applied at a depth of at least 2 inches will provide long-term weed control in nursery container production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.