Abstract

Mulberry leaves contain many bioactive compounds and have been widely used in traditional medicines and functional foods for prevention and treatment of age-related diseases, such as diabetes, cognitive impairment and obesity-mediated liver cancer. Aging has an irreversible negative impact on human health for many years, even decades, before death, which is a social and economic burden on society. The objective of this study was to investigate the antioxidant and anti-aging effects of mulberry leaf extract (MLE) in vivo and in vitro. The Caenorhabditis elegans (C. elegans) was used as a model organism to observe the effects of different concentrations of MLE (1, 2, 4, 8 mg/mL) on nematodes' healthy lifespan, reproductive capacity, locomotion, stress resistance, and antioxidation. In addition, D-galactose (D-gal) induced liver aging in mice and L-02 cells were established. The antioxidant and anti-aging effects of MLE were evaluated by body weight, organ indexes, malondialdehyde (MDA), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), aspartate and alanine aminotransferases (AST and ALT), reactive oxygen species (ROS), mitochondrial membrane potential (MMP), hematoxylin and eosin (H&E), senescence-associated β-galactosidase (SA-β-Gal). Besides, the expressions of AMPK/SIRT1/PGC-1α and Nrf2-Keap1 were detected by Western blotting. MLE could significantly prolonged nematodes' average life span and improved most physiological indicators related to aging of C. elegans. Moreover, Treatment with MLE ameliorated the decreased body weight and organ index (weight of organ/body weight) in model mice, and protected against oxidative stress in mice and liver cells, in a dose-dependent manner, up-regulating T-SOD and T-AOC, while reducing ROS and MDA levels. MLE decreased both liver and cell levels of AST and ALT, and enhanced the mitochondrial membrane potential. MLE activated the AMPK/SIRT1/PGC-1α pathways, participated in mitochondrial biosynthesis and oxidative metabolism and delayed D-gal-induced aging. MLE promoted the accumulation of Nrf2 in the nucleus, indicating that the improved oxidative stress response was mediated by the Nrf2-Keap1 pathway in vivo and in vitro. MLE appeared to have great potential for stimulating the oxidative stress response and attenuating the aging process of in vivo and in vitro, and provide a novel health-promoting resource against aging and aging-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call