Abstract
Legal judgment prediction (LJP) is used to predict judgment results based on the description of individual legal cases. In order to be more suitable for actual application scenarios in which the case has cited multiple articles and has multiple charges, we formulate legal judgment prediction as a multiple label learning problem and present a deep learning model that can effectively encode the content of each legal case via a multi-residual convolution neural network and the semantics of law articles via an article encoder. An article-wise attention mechanism is proposed to fuse the two types of encoded information. Experimental results derived on the CAIL2018 datasets show that our model provides a significant performance improvement over the existing neural models in predicting relevant law articles and charges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.