Abstract

There are two main limitations in most of the existing Knowledge Graph Question Answering (KGQA) algorithms. First, the approaches depend heavily on the structure and cannot be easily adapted to other KGs. Second, the availability and amount of additional domain-specific data in structured or unstructured formats has also proven to be critical in many of these systems. Such dependencies limit the applicability of KGQA systems and make their adoption difficult. A novel algorithm is proposed, MuHeQA, that alleviates both limitations by retrieving the answer from textual content automatically generated from KGs instead of queries over them. This new approach (1) works on one or several KGs simultaneously, (2) does not require training data what makes it is domain-independent, (3) enables the combination of knowledge graphs with unstructured information sources to build the answer, and (4) reduces the dependency on the underlying schema since it does not navigate through structured content but only reads property values. MuHeQA extracts answers from textual summaries created by combining information related to the question from multiple knowledge bases, be them structured or not. Experiments over Wikidata and DBpedia show that our approach achieves comparable performance to other approaches in single-fact questions while being domain and KG independent. Results raise important questions for future work about how the textual content that can be created from knowledge graphs enables answer extraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.