Abstract

Neural processing of objects with action associations recruits dorsal visual regions more than the neural processing of objects without such associations. We hypothesized that because the dorsal and ventral visual pathways have differing proportions of magno- and parvocellular input, there should be behavioral differences in perceptual tasks between manipulable and nonmanipulable objects. This hypothesis was tested in college-age adults across five experiments (Ns = 26, 26, 30, 25, and 25) using a gap-detection task, suited to the spatial resolution of parvocellular processing, and an object-flicker-discrimination task, suited to the temporal resolution of magnocellular processing. Directly predicted from the cellular composition of each pathway, a strong nonmanipulable-object advantage was observed in gap detection, and a small manipulable-object advantage was observed in flicker discrimination. Additionally, these effects were modulated by reducing object recognition through inversion and by suppressing magnocellular processing using red light. These results establish perceptual differences between objects dependent on semantic knowledge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.