Abstract

The role of dietary fatty acids in the generation of bone marrow (BM) immune cells and their trafficking to extramedullary compartments in the obesity is not yet fully understood. C57BL/6J mice are randomly assigned to isocaloric high-fat diets (HFDs) formulate with dietary fats rich in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs fortified with eicosapentaenoic and docosahexaenoic acids for 20 weeks, followed by profiling of the obese metabolic phenotype and immunophenotypic features of immune cells in blood, spleen, and BM. All HFDs induce an obese phenotype, but it becomes largely less disruptive after the HFDs are enriched in MUFAs, which also induce signs of granulopoiesis and an expansion of long-term hematopoietic stem and granulocyte-macrophage progenitor cells in BM. In contrast, a HFD enriched in SFAs disturbs the fitness of medullary lymphocytes and promotes monopoiesis in favor of pro-inflammatory activated subsets. The reshaping of the fatty acid pools with MUFAs from the diet serves to manipulate the generation and trafficking of immune cells that are biased during obesity. These findings reveal a novel strategy by which dietary MUFAs may be instrumental in combating HFD-induced dysfunctional immune systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.