Abstract

Mueller matrix polarimetry is a powerful optical technique for characterization of both anisotropic and bianisotropic materials. This review emphasizes methods for the interpretation of measured Mueller matrices, from the meanings of matrix symmetries, to ab initio calculations of Mueller matrices that begin with Maxwell’s equations operating on materials with permittivity, permeability, and magnetoelectric constitutive tensors. We present an overview of polarimetry measurements in crystals as well as metamaterials that have optically responsive features on the order of the wavelength of visible light. Examples of the full measurement of the constitutive tensors of bianisotropic media from the analysis of their Mueller matrices, collected in either transmission or reflection, are illustrated for natural crystals, polycrystals, and nanofabricated metamaterials. Experimental and theoretical research into the complex optical responses of bianisotropic materials with polarized light is best expressed in terms of the Mueller matrix, as it offers an unambiguous and mathematically robust platform for analysis of light–matter interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.