Abstract

A Mueller matrix M is developed for a single-scattering process such that G(theta, phi) = T (phi(a))M T (phi(p))u, where u is the incident irradiance Stokes vector transmitted through a linear polarizer at azimuthal angle phi(p), with transmission Mueller matrix T (phi(p)), and G(theta, phi) is the polarized irradiance Stokes vector measured by a detector with a field of view F, placed after an analyzer with transmission Mueller matrix T (phi(a)) at angle phi(a). The Mueller matrix M is a function of the Mueller matrix S (theta) of the scattering medium, the scattering angle (theta, phi), and the detector field of view F. The Mueller matrixM is derived for backscattering and forward scattering, along with equations for the detector polarized irradiance measurements (e.g., cross polarization and copolarization) and the depolarization ratio. The information that can be derived from the Mueller matrix M on the scattering Mueller matrixS (theta) is limited because the detector integrates the cone of incoming radiance over a range of azimuths of 2pi for forward scattering and backscattering. However, all nine Mueller matrix elements that affect linearly polarized radiation can be derived if a spatial filter in the form of a pie-slice slit is placed in the focal plane of the detector and azimuthally dependent polarized measurements and azimuthally integrated polarized measurements are combined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.