Abstract

The uncovering of protein-RNA interactions enables a deeper understanding of RNA processing. Recent multiplexed crosslinking and immunoprecipitation (CLIP) technologies such as antibody-barcoded eCLIP (ABC) dramatically increase the throughput of mapping RNA binding protein (RBP) binding sites. However, multiplex CLIP datasets are multivariate, and each RBP suffers non-uniform signal-to-noise ratio. To address this, we developed Mudskipper, a versatile computational suite comprising two components: a Dirichlet multinomial mixture model to account for the multivariate nature of ABC datasets and a softmasking approach that identifies and removes non-specific protein-RNA interactions in RBPs with low signal-to-noise ratio. Mudskipper demonstrates superior precision and recall over existing tools on multiplex datasets and supports analysis of repetitive elements and small non-coding RNAs. Our findings unravel splicing outcomes and variant-associated disruptions, enabling higher-throughput investigations into diseases and regulation mediated by RBPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.