Abstract
Mucus secretion from individual tracheal glands in adult ferrets was studied with time-lapse optical imaging of mucus droplets under an oil layer. Density of functional glands (determined by responses to 1 muM carbachol) was 1.5 +/- 0.3 per mm(2) (n = 6). Secretion rates (in pl.min(-1).gland(-1)) were as follows: 4.1 +/- 0.7 basal (unstimulated; n = 27, 669 glands), 338 +/- 70 to 10 microM forskolin (n = 8, 90 glands), 234 +/- 13 to 1 microM VIP (n = 6, 57 glands), 183 +/- 92 to 10 microM isoproterenol (n = 3, 33 glands), 978 +/- 145 to 1 microM carbachol (n = 11, 131 glands), and 1,348 +/- 325 to 10 muM phenylephrine (n = 7, 74 glands). The potency (EC(50), in microM) and efficacy (V(max), in pl x min(-1) x gland(-1)) were 7.6 (EC(50)) and 338 +/- 16 (V(max)) to forskolin, 1.0 (EC(50)) and 479 +/- 19 (V(max)) to VIP, 0.6 (EC(50)) and 1,817 +/- 268 (V(max)) to carbachol, and 3.7 (EC(50)) and 1,801 +/- 95 (V(max)) to phenylephrine. Although carbachol and phenylephrine were equally effective secretagogues, only carbachol caused contractions of the trachealis muscle. Synergy was demonstrated between 300 nM isoproterenol and 100 nM carbachol, which, when combined, produced a secretion rate almost fourfold greater than predicted from their additive effect. The dependence of fluid secretion on Cl(-) and HCO(3)(-) varied depending on the mode of stimulation. Secretion stimulated by VIP or forskolin was reduced by approximately 60% by blocking either anion, while carbachol-stimulated secretion was blocked 68% by bumetanide and only 32% by HEPES replacement of HCO(3)(-). These results provide parametric data for comparison with fluid secretion from glands in ferrets lacking CFTR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Lung Cellular and Molecular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.