Abstract

Despite recent breakthroughs in identifying mucosal-associated invariant T (MAIT) cell antigens (Ags), the precise requirements for in vivo MAIT cell responses to infection remain unclear. Using major histocompatibility complex-related protein 1 (MR1) tetramers, the MAIT cell response was investigated in a model of bacterial lung infection employing riboflavin gene-competent and -deficient bacteria. MAIT cells were rapidly enriched in the lungs of C57BL/6 mice infected with Salmonella Typhimurium, comprising up to 50% of αβ-T cells after 1 week. MAIT cell accumulation was MR1-dependent, required Ag derived from the microbial riboflavin synthesis pathway, and did not occur in response to synthetic Ag, unless accompanied by a Toll-like receptor agonist or by co-infection with riboflavin pathway-deficient S. Typhimurium. The MAIT cell response was associated with their long-term accumulation in the lungs, draining lymph nodes and spleen. Lung MAIT cells from infected mice displayed an activated/memory phenotype, and most expressed the transcription factor retinoic acid-related orphan receptor γt. T-bet expression increased following infection. The majority produced interleukin-17 while smaller subsets produced interferon-γ or tumor necrosis factor, detected directly ex vivo. Thus the activation and expansion of MAIT cells coupled with their pro-inflammatory cytokine production occurred in response to Ags derived from microbial riboflavin synthesis and was augmented by co-stimulatory signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.