Abstract

BackgroundColorectal cancer (CRC) is one of the top ten causes of cancer deaths in the world. Despite an increased prevalence of colorectal cancer has been documented from developing countries, there is no any report regarding gut microbiota among colorectal cancer patients in Ethiopia. Therefore, the current study evaluated cultivable aerobic gut bacterial distributions among malignant and its adjacent normal biopsies of CRC patients.MethodsCRC patients who were under colorectal cancer resection surgery during April 2017 to February 2018 at Felege Hiwot Referral and University of Gondar Teaching Hospitals enrolled in the study. Biopsy specimens were taken from malignant and its adjacent normal-appearing tissues. Bacterial cultivation, quantification and characterization of saline washed biopsies were performed under aerobic and candle jar conditions. Differences in bacterial microbiota compositions between malignant and normal tissue biopsies were evaluated and analyzed using Microsoft excel 2010 and GraphPad Prism5 statistical software.Results Fifteen CRC patients were participated with a mean age of 53.8 ± 10.8 years old and majorities (73.3 %) of patients were in between the age groups of 40 and 60 years old. The mean ± SD bacterial microbiota of malignant biopsies (3.2 × 105 ± 1.6 × 105 CFU/ml) was significantly fewer than that of adjacent normal tissue biopsies (4.0 × 105 ± 2.2 × 105 CFU/ml). This dysbacteriosis is positively correlated with the occurrence of CRC (p = 0.019). Proteobacteria (55.6 %), Firmicutes (33.3 %) and Fusobacteria (11.1 %) were the most frequently isolated phyla from non-malignant biopsies while only Proteobacteria (58.8 %) and Firmicutes (41.2 %) were from malignant ones. Family level differences were observed among phyla (Firmicutes and Proteobacteria) isolated from the study participants. For instance, the relative abundance of family Bacillaceae from malignant (26 %) was lower than the normal biopsies (39 %). On other hand, family Enterobacteriaceae was twice more abundant in malignant tissues (45 %) than in its matched normal tissues (23 %). Furthermore, the family Enterococcaceae (14 %) of phylum Firmicutes was solely isolated from malignant tissue biopsies.ConclusionsThe overall microbial composition of normal and malignant tissues was considerably different among the study participants. Further culture independent analysis of mucosal microbiota will provide detail pictures of microbial composition differences and pathogenesis of CRC in Ethiopian settings.

Highlights

  • Colorectal cancer (CRC) is one of the top ten causes of cancer deaths in the world

  • The current study was aimed at determining the distribution of at least cultivable aerobic bacterial microbiota of cancerous and normal-featuring tissues of CRC patients

  • The dysbiosis of bacterial microbiota abundance and distribution in malignant tissues from adjacent normal biopsies is currently become an indicative in the diagnosis and prognosis of CRC patients. These alterations are demonstrated in our study by the presence of abundant bacterial microbiota in normal biopsies [x=4.0 × ­105 Colony forming unit (CFU)/ml] while much smaller bacterial population [approximately 2.0 × ­105 CFU/ml less] from malignant tissue biopsies of CRC patients (Fig. 1)

Read more

Summary

Introduction

Colorectal cancer (CRC) is one of the top ten causes of cancer deaths in the world. Despite an increased prevalence of colorectal cancer has been documented from developing countries, there is no any report regarding gut microbiota among colorectal cancer patients in Ethiopia. Colorectal cancer (CRC) is the fourth most common causes of cancer deaths in the world with about 900,000 deaths annually [1] next to lung cancer [2]. It accounts for approximately 10 % of cancer-related mortality in western countries [3]. Age and hereditary factors are among non-modifiable factors that cannot be controlled by an individual while environmental factors including dietary change, urban residence, smoking habit, heavy alcohol consumption, and physical inactivity and obesity are considered as modifiable factors [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call