Abstract

Local drug delivery to the esophagus is hampered by rapid transit time and poor permeability of the mucosa. If some strategies aimed to improve the residence time have been proposed, non-invasive approaches to increase the drug penetration in the mucosa have not been described so far. Herein, we designed mucosa-penetrating liposomes to favor the penetration and retention of curcumin (CURC) in the esophagus. A novel mucosa penetrating peptide (MPP), SLENKGP, was selected by Phage Display and conjugated to pegylated liposomes at different PEG and MPP’s surface densities. Pegylation assured a long residence time of liposomes (at least 30 min) in the esophagus in vivo, but it did not favor the penetration of CURC in the mucosa. MPP-decorated liposomes instead delivered a significant higher amount of CURC in the mucosa compared to naked pegylated liposomes. Confocal microscopy studies showed that naked pegylated liposomes remain confined in the superficial layers of the mucosa whereas MPP-decorated liposomes penetrate the whole epithelium. In vitro, MPP reduced the interaction of PEG with mucin, meanwhile favoring the paracellular penetration of liposomes across epithelial cell multilayers. In conclusion, pegylated liposomes represent a valid approach to target the esophagus and the surface functionalization with MPP enhances their penetration in the mucosa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.