Abstract

AimThe aim of this study was to form hydrophobic ion-pairs of proteinase with cationic surfactants and to incorporate them into self-emulsifying drug delivery systems (SEDDS) to improve their mucus permeating properties. MethodsProteinase was ion-paired with benzalkonium chloride (BAK), hexadecylpyridinium chloride (HDP), alkyltrimethylammonium bromide (ATA) and hexadecyltrimethylammonium bromide (HDT) at pH 8.5-9.0, and subsequently incorporated into SEDDS consisting of Cremophor EL, propylene glycol, and Capmul 808-G (40/20/40). Mucus permeation of SEDDS containing proteinase complexes was evaluated via rotating tube technique and cell-free Transwell® insert system. Additionally, enzymatic activity of proteinase complexes as well as their potential cytotoxicity was evaluated. ResultsAmong all tested hydrophobic ion-pairs, proteinase/BAK showed highest potential. Mucus diffusion of SEDDS containing proteinase/BAK complex yielded in 2.3-fold and 2.5-fold higher mucus permeability with respect to blank SEDDS at Transwell® insert system and rotating tube technique, respectively. Furthermore, proteinase/BAK complex maintained the highest enzymatic activity of 50.5 ± 5.6% compared to free proteinase. At a SEDDS concentration as low as 0.006% cell viability was just 80%. The addition of proteinase complexes to SEDDS increased cytotoxicity on Caco-2 cells in a concentration-dependent manner. ConclusionSEDDS loaded with proteinase/BAK complexes are promising nanocarriers because of enhanced mucus permeating properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.