Abstract

Aim The present research was aimed to develop thiolated polyacrylic acid (TPA) based microspheres (MSPs) containing famotidine (FX) and clarithromycin (CLX). Methods TPA was synthesised from polyacrylic acid and l-cysteine in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC). The prepared TPA was characterised using FT-IR (Fourier transform-infra red), 1H-NMR (proton nuclear magnetic resonance) spectroscopy, P-XRD (powder X ray diffraction) method, and zeta potential. The analytical tools have supported the formation of TPA. The thiolated microspheres were prepared by emulsion solvent evaporation method using 0.75% w/v polymer concentration and stirring at 400 rpm for 8 hr. Results The average particle size and zeta potential of optimised formulation was found to be 25.2 ± 1.87 μm and –26.68 mV, respectively. The entrapment efficiency of the optimised formulation was obtained 67.20% for FX and 70.20% for CLX. The developed microspheres were swelled only in 4 h from 0.5 to 0.9. The in vitro mucoadhesive study and in vitro drug release studies demonstrated that microspheres showed mucoadhesive property. In in vitro drug release studies, the release of FX and CLX were observed to be 58.68% and 60.48%, respectively from microspheres in 8 h. The thiolated microspheres showed higher adhesion time (7.0 ± 0.8 h) in comparison to the plain microspheres (2.6 ± 0.4 h). Conclusion The prepared TPA based mucoadhesive microspheres can be utilised as carriers for the treatment of peptic ulcer caused by Helicobacter pylori which will offer enhanced residence time for the rational drug combination in the gastric region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.