Abstract

Topical ophthalmic formulations are the preferred approach to treat the anterior segment of the eye as it is a non-invasive therapeutic approach. The ocular bioavailability of drugs is generally limited, due to the presence of impervious anatomical barriers and low residence time and contact with the target tissue. Optimization of clarithromycin-loaded nanostructured lipid carriers using Design of Experiments was undertaken. Manufacture of nanostructured lipid carriers was achieved using hot emulsification ultrasonication. Formulation and process parameters were successfully identified following screening and subsequently optimized using Tween® 20, as a stabilizer. Muco-adhesive properties that could potentially increase ocular residence time, in vitro clarithromycin release and cytotoxicity against HeLa cells were evaluated. Short term stability studies of the optimized lipidic formulations was assessed at 4 °C and 22 °C. The optimized formulation exhibited muco-adhesive properties under stationary conditions assessed using Laser Doppler Anemometry, sustained release of API over 24 h under in vitro conditions. In vitro cytotoxicity studies revealed that the NLC were less cytotoxic to HeLa cells in comparison to pure API. The results suggest that the optimized carriers may have the potential to enhance precorneal retention, increase ocular availability and permit dose reduction or permit use of a longer dosing frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call